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The following 'linear' recurrence relation, 

[( j  n + l ) ( j +  1/2 j - m)] dm, n-l(fl) 
n ~ ] i / 2 r / J  + [ ( j + n + l ) ( j - . . , j  ,-m,,+l(fl) 

+2(m - n cos/3) sin -I (fl)d~,,(fl) = O, (5) 

proved to be remarkably stable, the starting point being (3) 
and (formally) d~j+l(fl)= 0. It can be verified by direct 
replacement of the explicit expressions of the d j given m, rt 

by Brink & Satchler (1975). Since the type and number of 
operations are almost the same as in (2), and taking into 
account the results of Fig. 1, it can be estimated that troubles 
may begin for j of the order of 1000. The formula was 
tested for j  <-250, and the deviation from the orthogonality 

conditions was less than 10 -1° . All the computations were 
performed in double precision on the IBM 3090 of C1RCE, 
Orsay. 

The author thanks Pascalou Rigolet for drawing his 
attention to this problem. 
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Abstract 

Salient features of various parameterizations of cubic-cubic 
misorientation are discussed. It is proposed that the quater- 
nion representation of rotations, as a pair of antipodal 
points on the surface of a four-dimensional sphere, encom- 
passes the most desirable properties of other proposed 
representations, viz rectilinearity, a closed form for the 
composition of successive rotations, and an equivalence 
between the Euclidean measure on its parameter space and 
the invariant measure in the space of rotations. The 
classification of cubic-cubic misorientations according to 
group multiplicity is described in Euler angle and quater- 
nion representations. A correspondence between co- 
incidence site lattice (CSL) boundaries (Z_<49), Euler 
angles and axis-angle parameters is given. 

The following pertains to the recent paper of Zhao & Adams 
(1988), entitled Definition of an Asymmetric Domain for 
lntercrystalline Misorientation in Cubic Materials in the 
Space of Euler Angles, and subsequent comments of 
Grimmer (1989). It is clear that the Euler angle representa- 
tion of misorientation suffers from a number of disadvan- 
tages as discussed by Altmann (1986), Frank (1988), 
Grimmer (1989), and others. However, quantitative descrip- 
tions of orientation and misorientation distribution func- 
tions have usually been expressed in Fourier series using 
generalized spherical harmonics (Bunge, 1982); and these 
are defined in terms of Euler angles (Gelfand, Minlos & 
Shapiro, 1963). In their calculation of the misorientation 
distribution function (MDF) in copper, for example, 
Pospiech, Sztwiertnia & Haessner (1986) used the space of 
Euler angles for computation, and later transformed to the 
axis-angle parameters. Comparable orthogonal basis func- 
tions for axis-angle, quaternion, Rodrigues or other par- 
ameterizations have not yet been defined, even though they 

would be valuable. The work of Zhao & Adams (1988) was 
motivated by the pressing need to represent continuous 
functions, in the smallest physically distinctive domain of 
cubic-cubic misorientation, given the necessity of using 
Euler angles. The definition of an asymmetric domain sig- 
nificantly reduces computation time and increases the 
clarity of representation. 

The quaternion representation described in the comments 
by Grimmer has some significant advantages. This rep- 
resentation, due to Handscomb (1958), defines rotation by 
a pair of antipodal points on the hypersurface of a unit 
sphere in four-dimensional space. [Note that this is not the 
quaternion parameter Q of Frank (1988), which is obtained 
from Handscomb's quaternion by omitting its fourth com- 
ponent.] Handscomb shows in his concise paper that his 
representation has the following properties. It has the rec- 
tilinearity property of Frank's mapping (ii). In fact 
Handscomb obtains the semi-regular truncated cube by 
considering the quaternions corresponding to minimum 
angle descriptions of misorientations between cubic crys- 
tals. It also has the property that the result of two successive 
rotations can be calculated as easily as in Frank's mapping 
(iii). Finally it has the property that the Euclidean measure 
on its parameter space corresponds to an invariant measure 
in the space of rotations as in Frank's mapping (iv). In 
summary, it combines the advantages of Frank's mappings 
(ii)-(iv) at the price of using four dimensions instead of 
three. Conversely, the price of going to three dimensions 
is that at most one of the three desired properties can be 
maintained. 

Table 2 of the previous paper by Zhao & Adams contains 
some errors as noted by Grimmer. Table 1 of this comment 
is a corrected table. It is correct that only boundaries with 
rotation axis [1, 1, 1] should be classified as m =6. This 
statement is in good agreement with the analysis presented 
in section 3 of the paper (Zhao & Adams, 1988). Boundaries 
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27b 
29a 
29b 
31a 
31b 
33a 

Table 1. CSL boundaries for ~ <-49 (m is the multiplicity) 

Euler angles Axis-angle Euler angles Axis-angle 
m (Pl ~b ~P2 (h, k, l) to ,X m tp I ~b (P2 (h, k, l) to 

12 45.00 70-53 45.00 1, 1, 1 60.00 33b 2 12.34 83-04 58.73 3, 1, 1 33.56 
8 0.00 90-00 36.86 1, 0, 0 36.86 33c 4 38.66 75.97 38.66 1, 1, 0 58.99 
6 26.56 73.40 63.44 1, 1, 1 38.21 35a 2 16.86 80.13 60.46 2, 1, 1 34-05 
4 26.56 83.62 26.56 1, 1, 0 38.94 35b 2 30.96 88-36 59.04 3, 3, 1 43.23 
4 33-68 79.53 33-68 1, 1, 0 50.47 37a 8 0-00 90.00 18.92 1, 0, 0 18-92 
8 0.00 90.00 22.62 1, 0, 0 22.62 37b 2 12.53 85-35 40.60 3, 1, 0 43.14 
6 18.43 76.66 71.57 1, 1, 1 27.79 37c 6 36.87 71.08 53-13 1, 1, 1 50.57 
2 19.65 82.33 42.27 2, 1, 0 48.19 39a 6 21-80 75.14 68.20 1, 1, 1 32.20 
8 0.00 90.00 28.07 1, 0, 0 28.07 39b 1 29.20 87.06 48.12 3, 2, 1 50.13 
4 45.00 86-63 45-00 2, 2, 1 61.92 41a 8 0.00 90.00 12.68 1, 0, 0 12.68 
4 18-44 86.98 18.44 1, 1, 0 26.53 41b 2 17-10 84.40 36.03 2, 1, 0 40.88 
6 33-69 71.59 56.31 1, 1, 1 46.83 41c 4 36.87 77.32 36.87 1, 1, 0 55.88 
6 14.03 79.02 75-97 1, 1, 1 21.78 43a 6 9.46 81.98 80.54 1, 1, 1 15.18 
2 22.83 79.02 50.91 2, 1, 1 44.41 43b 2 12.10 87.33 24.78 2, 1, 0 27-91 
2 15.25 82.51 52.13 3, 1, 1 40.45 43c 4 45.00 80.63 45.00 3, 3, 2 60.77 
8 0.00 90.00 16.26 1, 0, 0 16.26 45a 2 10.30 83.62 63.44 3, 1, 1 28.62 
2 36.87 90.00 36.87 3, 3, l 51.68 45b 2 26.57 83.62 63.43 2, 2, 1 36.87 
4 21.80 85.75 21.80 l, 1, 0 31.59 45c 2 38.66 84.90 51-34 2, 2, 1 53.13 
2 15.07 85.75 31.33 2, l, 0 35.43 47a 2 26.56 87.56 63.44 3, 3, 1 37.07 
8 0-00 90.00 43.60 1, 0, 0 43.60 47b 2 22.71 82.67 35.39 3, 2, 0 43.66 
2 33.69 84.06 56.31 2, 2, 1 46.40 49a 6 30.96 72.17 59.04 1, 1, 1 43.57 
6 11-31 80.72 78.69 1, 1, l 17.90 49b 2 10.62 85.32 47.49 5, 1, 1 43.57 
2 27-41 78.84 43.66 2, 1, 1 52.20 49c 2 30.35 75.82 49.27 3, 2, 2 49.23 
4 14.04 88.26 14.04 1, 1, 0 20.05 

Table 2. Classification of multiplicity m for all cubic-cubic misorientations using quaternion representation 

m a b c d C o n d i t i o n s  

48 1 0 0 0 
16 1 x/-2-1 0 0 
12 1 1/3 1/3 1/3 
8 1 ,¢~-1 x/2-1  3 - 2 v ~  

1 b 0 0 x / 2 - 1 >  b > 0 .  
6 1 b b b 1 /3>  b > 0 .  
4 1 b b 0 x/2-1-> b > 0 .  

l b (1 -b)/2 (1 -b)/2 x/2-1  ->b> 1/3. 
l b b 1 - 2 b  x / 2 - 1 >  b >  1/3. 

2 1 b c 0 x/2-1-> b >  c>O. 
1 b c c v ~ - l > _ b > c > O , l > b + 2 c .  
1 b b d x / 2 - 1 _ > b > d > O , l > 2 b + d .  
l b c l - b - c  x / 2 - 1 > - b > c > l - b - c .  
1 x /2-1  c (x/2-  1)c x /2 -  1 > c > 0 .  

1 All others 

,~29b, 35b, 45b, 45c, 47a should be classified as m =2  
because they lie upon the ABD plane (but not upon the 
edges) of Fig. 4 in the paper. Boundaries ,~23, 27b, 35a, 
37b, 47b, 49b were erroneously classified as m = 1 because 
the authors had difficulties in analyzing points on the curved 
surface ABD. It is confirmed now that every misorientation 
point on the surface ACD should be classified as m = 2; 
the inverse g-~ for all points on this curved surface can be 
shown to be equivalent to g under relation (44) of the 
paper. For the convenience of future usage, we have pro- 
duced two tables in the following which classify the multi- 
plicities m of all cubic-cubic misorientations in Euler angle 
and quaternion representations. A cubic-cubic misorienta- 
tion corresponds to an interior point of an asymmetric 
domain or one or two points on its surface. The multiplicity 
m of a misorientation satisfies m = 1 if the misorienta- 
tion is represented by an interior point and m->l  
otherwise. 

For quaternions [a, b, c, d], the following is chosen as 
the definition of an asymmetric domain: 

b>_c>_d>_O, a_>(x/2+l)b,  a>_b+c+d 

Using normalization a = 1, instead of the usual a 2 +  b 2 +  

c2+ d 2= 1, we have classified all points of multiplicity in 
Table 2. 

In Fig. 1, multiplicities associated with points are indi- 
cated at the locations of the points and those associated 
with lines and planes are indicated by an oval and by a 
cross, respectively. For example, point A is represented by 
quaternion [1, 0, 0, 0] and has multiplicity 48; line BE is 
represented by quaternions of the form [1, x/2 - 1, c, (x/2 - 
1)c] and associated with multiplicity 2. Plane EBF is 
described by quaternions of the form [1, b, b, d] and 
associated with multiplicity 2. Points on the surface BCEF 
related as [1, x /2-1 ,  c, d] and [1, x /2-1 ,  (c+d)/x/2,  
(c -d) /x /2]  represent physically equivalent misorienta- 
tions; all other points on the surface of the asymmetric 
domain represent distinct misorientations. Notice that 
m = l  if c > d > 0  and d # ( ,¢~-1)c  in [1, x/-2-1, c, d]. 

For Euler angle representation, an asymmetric domain 
is defined by the following relations: 0<-cos4'  <- 
sin ~p~ sin 92/(1 +cos ~p~ cos 92) and 0 < - ~p~-< ~P2--- 7 r /2-¢~ ,  
arccos (1/3)-< 4 ' -  7r/2. Table 3 gives all multiplicities in 
this space. 
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T a b l e  3. Classification o f  multiplicity m for  all cubic-cubic misorientations using Euler angles 

m q~ ~b ¢2 
48 0 ~r/2 0 

0 ~r/2 ~'/2 
16 0 ~'/2 ~r/4 
12 ~r/4 arccos (1/3) ~r/4 
8 ~'/4 7r/2 rr/4 

0 7r/2 ¢2 
6 ¢ 4) ~'/2 - ~p 
4 ~p ~b tp 

~-/4 ~b ~r/4 
2 ~ ~b ~2 

~p~ rr l2 ~/4 

tp ~b 7r/2 - ~p 
I all others 

Condit ions and comments  

(0, ~r/2, 0) and (0, ~r/2, ~'/2) are equivalent 

0 < ~o 2 < ,r/2, ~P2 # 7r/4 
cos ~b =sin 2~/(2+sin 2~), O<~o< ~r/4 
cos ~b =sin 2 tp/(l+cos 2 tp), 0<~p< 7r/4, 

arccos (1/3) < ~b < rr/2 
cos ~b =sin ¢~ sin ~2/(1+cos ¢~ cos ~P2), 

0 < ¢~ < ~2 < 7r/2 - ~ 
0< qh < 7r/4 

0 < ¢ <  ~-/4, 0-<cos ~b<sin 2 ~p/(1 +cos 2 ¢) 
0 < ¢ < ~r/4, 0 -< cos ~b < sin 2¢/(2 + sin 2 ~p) 

[1,b,c,l-b-c] 
[ I ,~4 ,~ -L3-2~ ]  

[ I ,b,b, 1-2b] ..~.......~.~E 

[1,L~:]~I~C- ~.  . . /  I " ' - 4  F 
3 3 3 ~ ~ . . 4  " 2 / ~  I 4,/]'L~-I,~--L0 

tl,bl-b 1-b ]~-... ~. / I // ] 
II 

~ 6  :~iil;il)c;';" ~-21 ~ 
"'"\ \ I / 7  ' ' ° '  \ 

\,:,.c.¢,\ l l / 
. ;i', ,c,0] 

/ \ "P[L-~-I,O,O] 

~ l ;  'b'0'0] 

VA 
48 [1,0,0,0] 

Fig. 1. Graphical  representat ion of  Table 2. 

sin 9 sincp~ 
cos~= + 1 z 

2 

5 -- , ~ 2 - ~ / ~ ' 3 / ~  
/ . - - - - % .  

48~)" / 

(0,Tt/2,n/2) 

A (n/4,arccos(1/3),r~/4) 

¢Pl = (I)2 

8 48 
(O,r~12,~N ) (0,~12,0) 

Fig. 2. Graphical  representat ion of  Table 3. 

The content of Table 3 is illustrated in Fig. 2 which shows 
the surface of the asymmetric domain. 

Again multiplicities associated with lines (curves) are 
indicated by ovals, and surfaces by crosses. For example, 
point  E has coordinates  (0, 17"/2, 17"/4) in the Euler  space 
a n d  p o s s e s s e s  m u l t i p l i c i t y  16. C u r v e  A D  has  m u l t i p l i c i t y  
6 a n d  t h e  c u r v e d  s u r f a c e  A C D  is a s s o c i a t e d  w i t h  mu l t i -  
p l ic i ty  2. P o i n t s  o n  t h e  s u r f a c e  BCD r e l a t e d  as ( ~ l ,  7r /2,  

~2) a n d  (qh,  7r /2 ,  ~r/2 - q~2) r e p r e s e n t  p h y s i c a l l y  e q u i v a l e n t  
m i s o r i e n t a t i o n s ; *  all o t h e r  p o i n t s  o n  t h e  s u r f a c e  o f  t h e  
a s y m m e t r i c  d o m a i n  r e p r e s e n t  d i s t inc t  m i s o r i e n t a t i o n s .  
N o t i c e  t h a t  m = 1 i f  0 < qh < ~2 < 7r/2 - ~ a n d  q~2 ~ 7r /4  in 
(~o,, "rr /2, ~'2). 

BLA and JZ acknowledge the support of the Office of 
Basic Energy Science of the US Department of Energy 
under grant No. DE-FG02-88ER45355. Help from Stuart 
Wright with the figures is gratefully acknowledged. 

* An example is Z25b which is represented by the point (36.87 °, 
90 °, 36"87 °) on BC and by (36.87 °, 90 °, 53.13 °) on BD of  Fig. 2. 
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